
Pose-independent Facial Action Unit Intensity Regression Based on 
Multi-task Deep Transfer Learning

Yuqian ZHOU, Jimin PI, and Bertram E. SHI  
Department of Electronic and Computer Engineering 

The Hong Kong University of Science and Technology 
Hong Kong SAR 

 
 

Abstract— Facial expression recognition plays an increasingly 
important role in human behavior analysis and human computer 
interaction. Facial action units (AUs) coded by the Facial Action 
Coding System (FACS) provide rich cues for the interpretation of 
facial expressions. Much past work on AU analysis used only 
frontal view images, but natural images contain a much wider 
variety of poses. The FG 2017 Facial Expression Recognition and 
Analysis challenge (FERA 2017) requires participants to estimate 
the AU occurrence and intensity under nine different pose angles. 
This paper proposes a multi-task deep network addressing the AU 
intensity estimation sub-challenge of FERA 2017. The network 
performs the tasks of pose estimation and pose-dependent AU 
intensity estimation simultaneously. It merges the pose-dependent 
AU intensity estimates into a single estimate using the estimated 
pose. The two tasks share transferred bottom layers of a deep 
convolutional neural network (CNN) pre-trained on ImageNet. 
Our model outperforms the baseline results, and achieves a 
balanced performance among nine pose angles for most AUs.   

I. INTRODUCTION 
Automated facial expression analysis provides important 

cues for inferring the human intent, which can facilitate human-
computer interaction. To better define categories of facial 
expressions, Paul Ekman et al. proposed a Facial Action Coding 
System (FACS) [1], which encodes localized facial muscle 
movements as action units (AUs). AU analysis, including AU 
occurrence detection and intensity estimation, helps to better 
evaluate and describe human mental states, like depression [2] 
and happiness [3]. Previous research has mostly studied datasets 
with near-frontal poses and posed expressions, such as CK+ [4], 
MMI[5] etc. In reality, non-frontal views of spontaneous facial 
expressions are common, and present challenges for accurate 
AU estimation. The FG 2017 Facial Expression Recognition and 
Analysis challenge (FERA 2017) [6] seeks to address the 
problem of AU occurrence and intensity estimation on data 
derived from multi-view spontaneous facial expression videos 
in the BP4D dataset [7, 8].  

In this paper, we focus on the AU intensity estimation sub-
challenge. We propose two transfer learning models based on 
VGG16 [9], a deep neural network trained on a subset of the 
ImageNet database. The first model is trains a single pose-
invariant recognizer, which cascades VGG16 with a randomly 
initialized two-layer fully connected regression network. The 
weights of the VGG16 network/two-layer regressor are fine-
tuned/trained using images with all different pose angles. The 

second model trains three pose-dependent regressors and one 
pose estimator. Both the regressors and the pose estimator share 
the same bottom layers, which are initialized using the VGG16 
weights, but then fine-tuned during training. Our experimental 
results for both networks outperform the baseline results. In 
most cases, the multi-task network merging pose-dependent 
estimates performs better than the single-task pose-invariant 
network, even without data augmentation.  

II. RELATED WORK 
AU intensity estimation is an important part in facial 

expression recognition. McKeown et al. [10] stated that the 
intensity of facial expression, which is an important feature to 
distinguish real high-level emotional states from pretended low-
level social behavior, helps to assess human psychological 
states. Common approaches to estimate intensity can be 
categorized into classification-based and regression-based 
methods, which can both be further subdivided into static or 
dynamic models.  

Previous efforts for AU intensity estimation using hand-
crafted features often use a similar pipeline. Features extracted 
can be geometric features computed from tracked facial 
landmarks, or appearance features filtered by local descriptors 
like LBP [11, 12], Gabor [13] etc. Selected features are further 
fed into a SVC [14] or AdaBoost [13] for classification, or into 
a SVR [15-17] or a neural network [15] for regression. These 
can be extended to dynamic models using the HMM [18], 
Dynamic Bayesian Network (DBN) [19] or Conditional 
Random Fields (CRF) [6, 20] etc. These approaches have been 
evaluated on public benchmark databases like CK-Enhanced 
[21], DISFA [22], UNBC-McMaster [23], BP4D [7, 8] or 
SEMAINE [24] etc. 

Deep convolutional neural network (CNN) have had great 
success in many computer vision tasks. Structures like AlexNet 
[25] and VGG [9] have been proven to have good performance 
in object recognition. Many past works have applied CNNs to 
AU detection and intensity analysis. A smile detector was 
proposed in [3] based on CNN. This was further extended to a 
dynamic model using a recurrent neural network (RNN). In [26], 
a single multi-label deep CNN was trained to estimate and 
classify five AUs simultaneously. Jaiswal et al. [27], who 
achieved the best performance on the FERA 2015 dataset [12], 
proposed a single-label network for each AU, and learned the 
shape, appearance and dynamic features jointly using a deep 
CNN and bidirectional long-short term memory (Bi-LSTM). 
However, training a deep CNN requires large-scale data and a This work was supported in part by the General Research Fund of the Hong 

Kong Research Grants Council, under grant 618713.  

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.112

872

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.112

872

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.112

872

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.112

872

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.112

872



long training time. With many parameters and insufficient data, 
such networks may easily over-fit subjects or specific AUs.   

Due to the large demand for data in training deep neural 
networks, transfer learning has been widely investigated to 
facilitate the training process with less data. Yosinski  et al. [28] 
systematically evaluated the generality or specificity of deep 
features, and quantified their transferability. They demonstrated 
that networks initialized with transferred weights and fine-tuned 
on new tasks displayed better generalization than networks 
trained from random weight initialization. Networks that re-use 
and select deep features pre-trained on non-face large-scale 
images have outperformed networks trained from scratch in 
facial expression recognition [29].  

Deep transferred CNNs have shown the ability to learn pose-
specific representations of faces. In [30], Abd-Almageed  et al. 
applied multiple transferred CNNs trained on rendered faces 
with different head poses to represent faces, and concatenated 
the features for face recognition. In the area of AU analysis, 
Tősér et al. [31] trained a deep CNN to detect AUs on frontal-
view faces and evaluated it on the multi-pose augmentation 
dataset of BP4D. They claimed that the detection performance 
using the CNN did not degrade significantly with varying head 
pose. This inspired us to use deep transfer networks to learn 
pose-specific features for AU intensity estimation.  

III. METHODOLOGY 
In this section, we introduce our proposed model to address 

multi-pose AU intensity estimation. First, we introduce the 
BP4D database used in the FERA 2017 challenge and the 
methods we used to sample and pre-process the data. Second, 
we propose two deep network structures and explain the 
intuition behind the modeling. 

A. Dataset 
The dataset used for training and evaluation in the FERA 

2017 challenge is derived from the 3D model of the BP4D 
dataset. It contains a total of 41 subjects (18 men and 23 women) 
in the training partition, and 20 additional subjects (13 men and 
7 women) in the validation partition. Subjects show spontaneous 
facial expressions while performing eight different tasks. For 
each video sequence, facial images at nine different poses are 
generated from the 3D model of BP4D.  

For the AU intensity estimation sub-challenge, each frame is 
labelled with the intensity over seven different AUs (AU1, AU4, 
AU6, AU10, AU12, AU14, and AU17), ranging from zero to 
five. Frames with missing labels are assigned a value of nine, 
and are not used for training nor evaluation. More details of the 
dataset are shown in the baseline paper [6].  

For each AU and each of the nine poses, we randomly 
sampled 3000 non-zero frames (with AU labels from one to 
five), and 3000 zero frames (with AU label zero) from the 
training partition as the training set in the experiment. Thus, AU-
specific training set contains 54000 images. Similarly, we also 
sampled 54000 images for each AU as the validation set, which 
we used to determine when to stop training. The labels of each 
AU were rescaled to 0-1 for training.   

We pre-processed the images by converting them to 
greyscale, equalizing the histogram and finally resizing them to 
224 × 224. We did not detect the facial landmarks to align the 
face, since detection of facial landmarks for extreme poses is not 
reliable. In addition, the nonlinear warping of the face required 
for extreme poses may adversely affect the appearance shape. 
Therefore, we only considered the appearance features learned 
by deep structures from the original images. 

B. Pose-invariant Model 
Figure 1(a) shows the architecture of the proposed pose-

invariant model we designed in our experiment. In this model, 
for each AU we concatenate bottom five stages of VGG16 with 
a randomly initialized two-layer regression network. The 
VGG16 network takes as input 224 × 224 pixel images. The 
bottom five stages include both convolutional and max pooling 
layers, and output 512 feature maps with size 7 × 7. The fully 
connected regression network has 256 neurons in the hidden 
layer. The output of the regressor is further rectified by a sigmoid 
function. The entire network is trained using data from one AU 
but all poses to minimize the Euclidean loss.  

Intuitively, given the rich and complex filter banks in the 
high-level layers of VGG16, the network will be able to learn 
the most relevant feature maps and capture enough expression 
variations in terms of facial patterns. By fine-tuning the VGG 
layers, the network will learn more pose-invariant AU-specific 
and region-specific features. On the other hand, forcing the 
network to generate a single estimate across all poses may 
interfere with its ability to exploit pose-specific features for each 
AU. 

C. Pose-dependent Model 
Figure 1(b) illustrates the system architecture of the pose-

dependent model. For each AU, instead of training only one 
regressor for all poses, we separate the nine poses into three 

 
(a) 

 
(b) 

Fig.1. The architecture of the two proposed models. (a) The pose-invariant model 
concatenates a pre-trained VGG16 network with a randomly initialized two-
layer regressor whose output is further rectified by a sigmoid function. The entire 
network is re-trained for each AU independently using data from all poses 
according to the Euclidean loss. (b) The pose-dependent model trains three pose-
dependent regressors and an auxiliary pose estimator. The nine poses are 
separated into three groups for training the three pose-dependent regressors. The 
output of the pose estimator is a winner-take-all network with three units, one 
for each pose group. The estimator and regressors share the same bottom layer. 
The three pose estimates for each AU are merged by taking their dot product 
with the pose estimator output. 
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groups (pitch up, pitch down and without pitch rotation), and 
train three pose-dependent regressors. The reason for the 
grouping criteria will be explained in section IV. We also train 
an auxiliary pose estimator, which has three softmax outputs 
approximating the probability that the input image belongs to 
each pose group. The three regressors and pose estimator share 
the same bottom layers. The final AU estimate is the dot product 
between the output of the pose network after winner-take-all 
(WTA) and the vector of the three pose-dependent AU intensity 
estimates.  

For all AUs except AU12, we jointly trained the three 
regressors and fine-tuned the bottom layers using data from all 
poses and AU intensities under the assumption that the output 
of the pose estimation network is equal to the known pose. This 
ensures that each network is trained only on data from the 
corresponding pose group. For AU12, we additionally trained 
the randomly initialized upper layers of the pose estimator 
while leaving the weights of the bottom layers unchanged. 
Finally, we fine-tune the entire AU12 network using the multi-
task objective defined by 

 ������
�	,�


∑ � ���, ����; � ���
��� + ∑ ��

��� �� ���, ����; �� �������

where � is the batch size, �� is the input image,  �� and ��  are 
the ground truth of AU intensity and pose, � and �� are the 
weights for AU and pose estimation, � is defined by the 
Euclidean loss, �� is defined with multi-class cross-entropy 
loss, and � is the parameter to balance the importance of tasks. 
In our experiment, � is set to 0.05. We train the network by 

Mini-batch Stochastic Gradient Descent (SGD) with learning 
rate 1e-4 in Tensorflow [32], and stop training when the 
validation loss starts to increase. Finally, we conduct noise 
suppression on the raw estimated result by median filtering with 
window length three. 

Intuitively, AU intensity estimation at different poses is 
based on different visual cues, and separating groups of poses 
to train the network will make the cues more explicit. On the 
other hand, the increased number of parameters may lead to 
over-fitting, especially in the absence of data augmentation.  

IV. EXPERIMENTAL RESULTS 
In this section, we show the experimental results of two 

systems on the validation set and compare it with the baseline 
paper. We also visualize the receptive fields of the pose-
invariant system to understand the learned features. Finally, we 
analyze the tradeoff between these two models.   

A. Pose-invariant Model 
We trained the pose-invariant model on the sampled 

training set without using pose prior and evaluated the model 
on the validation and testing partitions in terms of Intraclass 
Correlation Coefficient (ICC), Pearson Correlation Coefficient 
(PCC) and Root Mean Square Error (RMSE). The evaluation 
results on the validation partition are summarized in Table I and 
the results per pose are also listed in Table II. Compared to the 
baseline results, the pose-invariant model performs better on 
every AU and on all evaluation metrics. The overall ICC is  
improved by about 220%.  

We speculate that this improvement is due primarily to two 
factors. First, the baseline method detects facial landmarks, 
which has a high failure rate on extreme poses (up to 33.13% 
for images of pose 1). In contrast, our system does not miss 
frames when using appearance features. Second, warping the 
landmarks and aligning them may change the shape of facial 
structures. In our model, we do not warp the images but learn 
both the pose and expression variants using rich filter banks to 
avoid changing the original data.  

Intuitively, errors by the pose-invariant model may be partly 
due to differences in the spatial locations of important cues for 
AU intensity in the different poses. To validate this intuition, 
we performed an error analysis by computing the ICC 
confusion matrix C, whose elements ��� are the ICC values 
between pairs of poses (i and j). This matrix measures the 
consistency between estimated sequences of different poses. 
Figure 2(a) shows the ICC confusion matrix for each AU. We 
note several observations. First, for AU6, AU10 and AU12, the 
estimated sequences from different poses are more consistent 
with each other. Second, for each AU, the estimation sequences 
are influenced more by pitch than yaw rotations. This inspired 
us to group each pitch position (e.g. poses 1, 2 and 3) together 
and train pose-specific models. 

In order to validate the match between the learned features 
and the definition of an AU, we further visualized the receptive 
fields of the final activation in a single-label regressor under 
each AU and pose, using the method of deconvolution proposed 
by Zeiler et al. [33]. Instead of visualizing the high-level feature 
maps, we back-propagated the final neuron to the pixel space 

 
(a) 

 
(b) 

Fig.2. The ICC confusion matrix for two models. The color map from blue to 
yellow corresponds to ICC values from 0 to 1. (a) Pose-invariant model: for 
AU6, AU10 and AU12, the estimated sequences of each pose are more 
consistent with each other. The estimation sequences are influenced more by 
pitch than yaw. (b) Pose-dependent model: consistency is improved for AU1, 
AU4, AU6, AU10, AU12 and AU17. 
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by computing the gradients of the final output with respect to 
the original pixels, which is !� = "#�$%;�	 �

"$%
, where �� is the 

input image, ����; � � is the network function of the deep 
CNN, and !�  is the reconstructed salient receptive fields. We 
computed !�  over 1000 random samples with highly activated 
estimated values for each AU and pose, and then summed and 
normalized them. The visualization results for some AUs are 
shown in Figure 3, which demonstrates that the network learned 
to focus on AU-relevant spatial regions regardless of pose. 
Interestingly, the receptive fields tended to focus on the left half 

of the face because this region is common among all images 
from different poses. 

B. Pose-dependent Model 
We grouped the data into pitch up (poses 1, 2 and 3), no 

pitch (poses 4, 5 and 6) and pitch down (poses 7, 8 and 9), and 
trained the pose-dependent model without augmenting the 
original training data. The affiliated pose estimator was trained 
on top of the AU12 detector, and achieved a 100% classification 
accuracy on the validation set after jointly training with the AU 

TABLE I   RESULTS COMPARISON FOR THE THREE MODELS ON THE VALIDATION PARTITION 

AU Baseline Model Pose-invariant Model Pose-dependent Model 
RMSE PCC ICC RMSE PCC ICC RMSE PCC ICC 

AU01 1.006 0.097 0.082 0.548 0.444 0.444 0.518 0.538 0.536 
AU04 1.296 0.084 0.069 0.562 0.273 0.251 0.571 0.415 0.412 
AU06 1.648 0.429 0.429 0.993 0.736 0.724 0.987 0.718 0.704 
AU10 1.628 0.435 0.434 0.877 0.794 0.774 0.943 0.783 0.779 
AU12 1.345 0.543 0.540 0.908 0.802 0.800 0.825 0.827 0.816 
AU14 1.637 0.264 0.259 1.140 0.607 0.548 1.170 0.591 0.504 
AU17 1.256 0.052 0.005 0.865 0.345 0.337 0.746 0.465 0.454 
Mean 1.402 0.265 0.260 0.842 0.571 0.554 0.823 0.620 0.601 

TABLE II   POSE-INVARIANT MODEL RESULTS ON VALIDATION PARTITION, PER POSE 

RMSE 
Pose 1 2 3 4 5 6 7 8 9 VI 

AU01 0.533 0.582 0.578 0.461 0.464 0.508 0.594 0.571 0.618 0.548 
AU04 0.628 0.625 0.640 0.556 0.495 0.540 0.547 0.489 0.513 0.562 
AU06 1.064 1.000 1.007 0.901 0.876 0.902 1.074 0.995 1.091 0.993 
AU10 0.877 0.892 0.926 0.845 0.840 0.843 0.912 0.857 0.897 0.877 
AU12 0.910 0.942 0.991 0.817 0.830 0.851 0.976 0.899 0.940 0.908 
AU14 1.166 1.146 1.161 1.125 1.090 1.056 1.164 1.151 1.193 1.140 
AU17 0.937 0.973 0.990 0.744 0.772 0.848 0.758 0.862 0.858 0.865 
mean 0.874 0.880 0.899 0.778 0.767 0.793 0.861 0.832 0.873 0.842 

ICC 
Pose 1 2 3 4 5 6 7 8 9 VI 

AU01 0.442 0.397 0.434 0.518 0.543 0.546 0.362 0.364 0.424 0.444 
AU04 0.183 0.142 0.160 0.321 0.383 0.314 0.235 0.309 0.268 0.251 
AU06 0.722 0.744 0.722 0.767 0.770 0.744 0.676 0.709 0.686 0.724 
AU10 0.768 0.761 0.748 0.789 0.797 0.799 0.760 0.785 0.765 0.774 
AU12 0.798 0.787 0.752 0.841 0.838 0.821 0.769 0.806 0.787 0.800 
AU14 0.541 0.559 0.540 0.552 0.600 0.610 0.519 0.530 0.485 0.548 
AU17 0.309 0.326 0.346 0.439 0.403 0.360 0.352 0.302 0.237 0.337 
mean 0.538 0.531 0.529 0.604 0.619 0.599 0.525 0.544 0.522 0.554 

TABLE III    POSE-DEPENDENT MODEL RESULTS ON VALIDATION PARTITION, PER POSE 

RMSE 
Pose 1 2 3 4 5 6 7 8 9 VI 

AU01 0.565 0.557 0.528 0.482 0.459 0.504 0.495 0.528 0.539 0.518 
AU04 0.695 0.677 0.745 0.499 0.537 0.577 0.431 0.413 0.460 0.571 
AU06 1.068 1.027 1.010 0.982 0.944 0.933 0.997 0.925 0.993 0.987 
AU10 0.839 0.894 0.969 0.916 0.926 0.945 1.013 1.000 0.977 0.943 
AU12 0.855 0.847 0.837 0.765 0.738 0.763 0.937 0.826 0.842 0.825 
AU14 1.070 1.110 1.139 1.073 1.117 1.132 1.235 1.309 1.316 1.170 
AU17 0.712 0.695 0.671 0.776 0.771 0.790 0.684 0.752 0.848 0.746 
mean 0.829 0.830 0.843 0.785 0.785 0.806 0.827 0.822 0.854 0.823 

ICC 
Pose 1 2 3 4 5 6 7 8 9 VI 

AU01 0.492 0.494 0.527 0.596 0.610 0.570 0.524 0.500 0.520 0.536 
AU04 0.230 0.213 0.224 0.533 0.524 0.498 0.525 0.603 0.551 0.412 
AU06 0.663 0.680 0.689 0.705 0.725 0.722 0.725 0.737 0.694 0.704 
AU10 0.804 0.781 0.751 0.800 0.800 0.784 0.785 0.783 0.763 0.779 
AU12 0.800 0.803 0.808 0.843 0.853 0.840 0.786 0.827 0.817 0.816 
AU14 0.584 0.571 0.550 0.578 0.545 0.522 0.469 0.388 0.363 0.504 
AU17 0.507 0.514 0.497 0.497 0.466 0.459 0.493 0.419 0.235 0.454 
mean 0.583 0.579 0.578 0.650 0.646 0.628 0.615 0.608 0.563 0.601 
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estimators. We evaluated the system on all the videos in the 
validation partition (Table I through Table III).   

Compared with the pose-invariant model, the performance 
for most AUs in terms of ICC improved greatly, especially for 
AU1, AU4, AU12 and AU17, but it was not improved 
significantly, and even dropped for AU6, AU10 and AU14. In 
Figure 2(b), the consistency between each pose is adjusted for 
AU1 and AU17, but becomes worse for AU14.  

For testing, for each AU we chose the best model (either 
pose invariant or pose variant) based on the ICC computed for 
the validation partition, resulting in an overall ICC value of 
0.610 on the validation partition. The evaluation results on the 
testing partition computed by this mixed model are listed in 
Table IV and Table V. The system performance is significantly 
better than that of the baseline paper.  

V. CONCLUSIONS 
We proposed two transfer-learning models to address multi-

pose AU intensity estimation in the FERA 2017 sub-challenge. 
Both models used fine-tuned bottom layers initialized using the 
VGG16 network weights. The first contains a single pose-
invariant classifier. The second merges results from pose-
dependent classifiers. The pose-dependent model can learn the 
shared pose-specific features and balance the performance 
across poses. However, the system performance depends 
critically on the reliability of the pose estimator. For this dataset, 
poses were easy to differentiate, but this may not be the case for 
faces in the wild. Increasing the parameter size prolongs the 

training time, and often requires data augmentation to avoid 
over-fitting. Our results demonstrate that a deep network can be 
transferred to learn AU intensity estimation across multiple 
poses and can greatly outperform the baseline trained on 
geometric features.  
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Fig.3. The visualization of learned receptive field of the final regression neuron 
for some AUs and poses. The network learned to focus on the AU-defined 
regions regardless of pose.   
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