
 

Abstract—Requiring a dwell time before selection is a 

common way to solve “Midas-touch problem” in gaze-based 

interaction. Choosing the dwell time involves a tradeoff between 

unintentional selection for short dwell times and slow text entry 

for long dwell times. We propose a probabilistic model for gaze 

based selection, which adjusts the dwell time based on the 

probability of each letter based on the past letters selected. By 

reformulating the entire problem of gaze-based selection 

probabilistically, we can naturally integrate the probability of 

each character naturally and with very few prior assumptions 

and very few free parameters. It automatically assigns shorter 

dwell times to more likely characters and longer dwell times to 

less likely characters. Our experimental results demonstrate that 

the proposed technique speeds up typing without loss in 

accuracy. The concept of this can be generalized to other dwell-

based applications, leading to more efficient gaze system 

interaction. 

 
Keywords – Eye typing, gaze typing, dwell time, eye tracking, 

human system interaction. 

I. INTRODUCTION 

Gaze is an important signal for hands-free interaction. For 
people suffering from motor disabilities, such as ALS and 
muscular dystrophy, gaze is one of the main channels for them 
to communicate and interact with the world. With help of eye 
tracking technology, the user’s gaze can be located on a 2D 
computer screen and used as a control command. Activities of 
daily living can be controlled through gaze, such as computer 
interaction[1], wheelchair control [2], control of a robot 
arm[3].  

In gaze-based text entry users input letters by looking at 
different locations on a virtual keyboard on the screen. The 
biggest challenge in gaze-based selection is the “Midas-touch 
problem.” Humans use gaze most commonly for purposes 
other than control, e.g. gathering visual information. Thus, any 
gaze-based selection cannot assume that the object the user is 
looking at is the same as the object the user wishes to select, 
otherwise many objects would be selected unintentionally. 
There are several ways to deal with this, including adding 
different behaviors, e.g blinks, to indicate selection or by 
introducing a dwell time, where users keep their gaze fixed on 
the object of interest for a fixed period of time, the dwell time, 
before it is selected [4]. The choice of the dwell time is a 
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tradeoff between speed and accuracy. Short dwell times lead 
to fast selection, but at the cost of many erroneous selections.  

Given the importance of the choice of dwell time, many 
authors have investigated methods to enable users to select it 
easily. Spakov and Miniotas proposed to let the user to adjust 
dwell time on-line based on the exit time [5], the length of time 
between when a key is selected and when the eyes move away 
from it. This online adjustment suffers from delayed feedback 
and uncontrolled variations in the exit time. Marjaranta et al. 
enabled users to control the dwell time through speed control 
keys added to a control panel in the interface [6]. This method 
has the drawback that it requires extra selection time. 
Interested readers can refer to Räihä and Ovaska’s 
comprehensive analysis of dwell-based gaze typing [7].  

The influence of different feedback signals on typing 
performance was investigated by Majarunta et al. [8]. They 
showed that visual and audio feedback had a significant impact 
on typing speed and accuracy; therefore, we also employ 
feedback in our study.  

Some authors have sought to eliminate dwell time 
altogether. Kristensson and Vertanen investigated the potential 
of typing a word by looking at the letters in the word without 
pause [9]. Generally, this kind of system recommends words 
from a dictionary based on the gaze trajectory. Since the gaze 
trajectory passes over many unintended letters and may miss 
desired letters, the gaze trajectory is ambiguous. This system 
is prone to three types of errors: the extra-letter error, the 
neighbor-letter error, and the missing-letter error. 
Filteryedping handles only the extra-letter error [10]. GazeTry 
can handle all three errors, but is not robust in the presence of 
multiple errors [11]. Eyeswipe made slight change on the 
keyboard interface by introducing action button and proposed 
a “reverse crossing” eye gesture to select start letter and end 
letter[12]. With start and end letter fixed, word prediction from 
lexicon is more correct. However, the interface requires extra 
training to get used to it. Although these techniques can 
improve typing speed, they have several disadvantages. Pauses 
between characters within a word, e.g. due to fatigue, can 
degrade performance dramatically. They also cannot infer 
words that are not in the dictionary. These are usually dealt 
with by defaulting back to a dwell-based technique.  
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Other techniques to eliminate dwell time, such as 
Dasher[13, 14], pEYEwrite[15] and EyeWrite [16], use 
unconventional keyboard layouts, which are re-arranged to 
facilitate typing based on the likelihoods for the next letter 
based on previously typed letters. For example, in Dasher, 
users selected letters by gazing at them as they drift by in boxes 
whose sizes are proportional to the probability of the letter 
given the previous selections. Because of their unconventional 
design, these techniques require additional training, high 
concentration and may cause additional fatigue. These 
disadvantages have prevented their widespread adoption.  

Researchers have also sought to improve typing speed 
using letter and word prediction based on previously selected 
characters. Mackenzie and Zhang used letter prediction to 
determine which letter the user was fixating at and to 
determine which letters to highlight as potential next targets, 
thus reducing search time [17]. However, this may be 
distracting and cause errors if the highlighted keys do not 
include the intended key. Many systems present the most 
likely words given the past inputs in area of the screen outside 
the keyboard where users can directly select them by fixation 
[15, 17, 18]. The Augkey system accelerates dwell-based 
typing by eliminating saccades between the keyboard and the 
word selection area by showing the prefix and suffixes of the 
predicted words near the key being focused upon [19]. 
GazeTheKey system accelerate typing one step further by not 
only showing the most likely word around the key but also 
enabling selecting the word through a double-click 
manner[20].  

Very little work has focused on adjusting dwell time based 
on letter prediction. Intuitively, it makes sense to reduce the 
dwell time of more likely letters. This might be done in many 
possible ways. Recently, Mott[21] proposed a heuristic 
method where the dwell time of more likely keys was reduced 
depending upon combining information about the likelihood 
of the letter and the number of other likely letters that are close 
to it. They also progressively reduced dwell time as the user 
gets further into the word. Using this method resulted in a 17% 
gain in average speed. Because it combined multiple 
heuristics, this method required a large number of parameters, 
and made a number of ad-hoc assumptions, e.g. that the dwell 
time should reduce linearly with the probability.  

In this paper, we present a more principled way to adjust 
dwell time based on a Bayesian probabilistic model that allows 
us to estimate the probability that each key is the desired key, 
based on the sequence of past gaze points and the sequence of 
past selected letters. By formulating the problem 
probabilistically, we obtain a model that has a small number 
of free parameters and where the assumptions being made are 
clear and explicit. The adjustment of the dwell time is 
theoretically well founded, and can also be interpreted 
intuitively as the accumulation of evidence towards a fixed 
confidence threshold. More likely keys based on past 
selections start out with more evidence, and thus require a 
shorter fixation time before they are selected.  

The contribution of this work is two-fold. First, we propose 
a probabilistic model for gaze based selection, which includes 
as a special case a standard dwell time based gaze typing 
system with constant dwell time. Second, we show that this 
model enables us to incorporate prior information from past 

selected characters rigorously. The model depends upon only 
four easily interpretable parameters: one describing the extent 
to which the user maintains fixation on the desired character, 
one used to avoid double-selection of the same letter in quick 
succession, one used to control the dependence on prior 
context, and a threshold determining the required confidence 
before a selection is made.  Our experiment results 
demonstrate that the proposed system significantly improves 
the typing speed and decrease the error rates. Although we 
focus on improving dwell-based gaze typing, the model is also 
applicable to other dwell-based selection systems.  

II. METHOD 

The probabilistic model consists of two parts. The first is a 
generative model of the gaze given that a particular letter is 
being selected. The second is an n-gram based model, which 
gives the probability that each letter will be selected given the 
past selections. The two cues are integrated using Bayes rule 
to give the conditional probabilities that each key is the user’s 
selection target give the past gaze and typing history.  

A. Generative Model for Gaze in Dwell-based Typing 

Let K be the number of keys on the keyboard and number 
the keys with integers {1, … , 𝐾}. Let 𝐿𝑖 ∈ {1, … , 𝐾} indicate 
desired input sequence of keys and 𝑀𝑖 ∈ {1, … , 𝐾}  indicate 
the actual input sequence of keys, where 𝑖 indexes position in 
the sequence. The keys are arranged in a hexagonal array. 

Let 𝑔1,…, 𝑔𝑡  be a sequence of gaze points after the last 
selection, where t indexes time and each 𝑔 ∈  𝑅2 indicates a 
gaze location on the screen. We assume that the gaze locations 
are independent over time, but that the distribution of gaze 
points changes over time: 

 𝑝(𝑔1, … , 𝑔𝑇|𝐿𝑖 , 𝑀𝑖−1) = ∏ 𝑝(𝑔𝑡|𝐿𝑖 , 𝑀𝑖−1, 𝑡)𝑇
𝑡=1  

The gaze distribution at time index t is given by 

 𝑝(𝑔𝑡|𝐿𝑖 , 𝑀𝑖−1, 𝑡) = 𝛾(𝑡)𝑞(𝑔𝑡|𝐿𝑖) + (1 − 𝛾(𝑡))𝑈2(𝑔𝑡 , 𝑀𝑖−1) 

The mixing coefficient 𝛾(𝑡)  increases linearly from 0 to 1 
according to 

 𝛾(𝑡) =  {
𝑡⋅𝑇𝑠

𝑇d
if 𝑡 ⋅ 𝑇s < 𝑇d

1 otherwise
 

where 𝑇𝑠 indicates the sampling time and 𝑇d = 150ms is the 
delay before reaching the steady state probability distribution.  

The gaze distribution is initially equal to 𝑈2(𝑔𝑡 , 𝑀𝑖−1), a 
uniform distribution centered at the previously selected key 
𝑀𝑖−1. The spatial support of the uniform distribution is square 
and abuts the spatial support of the distribution for neighboring 
keys without overlap. The gaze distribution approaches the 
steady state distribution  

 𝑞(𝑔𝑡|𝐿𝑖) = (1 − 𝑤) ⋅ 𝑈1(𝑔𝑡) + 𝑤 ⋅ 𝑈2(𝑔𝑡 , 𝐿𝑖) 

where 𝑈1(⋅)  is a uniform distribution covering the entire 
screen area, 𝑈2(⋅, 𝐿𝑖) is uniform over a square region centered 
at hypothesized target key Li, and 𝑤 ∈ [0,1]  is a mixing 
coefficient determining the extent to which gaze points near 
the hypothesized target key are favored. 

We adopt this time varying probability distribution to 
better reflect the actual statistics of the gaze behavior. This 
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choice prevents the problem of double entry of the same key 
twice in quick succession by explicitly modelling that the eye 
gaze will still be close to the previously selected key 
immediately after selection. Other standard dwell time based 
systems also incorporate a delay before the same key can be 
selected in order to reduce the problem of double entry [7]. 

B. N-gram Letter Prediction 

We used a within word n-gram character model to capture 
the typing context. To compute the n-gram probabilities we 
utilized the letter sequences frequency counts from [22], which 
gives counts for word and letter sequences from 23GB of text 
data in the Google Books N-grams dataset. 

With n-gram letter prediction, the probability that the user 
wishes to select each letter depends upon the previous (n-1) 
letters selected. However, we considered only the context 
within each word (i.e. since the last space character). In other 
words, for the first character, probabilities were generated by 
a unigram model computed by maximum-likelihood 
considering only the first characters of each word of the data 
set. For the second character, the probabilities were generated 
by a bigram model computed using maximum likelihood 
considering only the second character of each word in the 
dataset, and so on up to the fourth character. In order to deal 
with missing prefixes (prior context) and for letters in longer 
words, we also computed a position independent set of uni- to 
5-gram models using the Witten-Bell smoothing method using 
the entire dataset. 

The probabilities generated above were further smoothed 
by mixing them with a uniform probability distribution over 
all keys. Denoting the n-gram probability computed as 

described in the previous paragraph by 𝑃𝑛 , and 𝑀𝑖−4
𝑖−1 =

(𝑀𝑖−4, … , 𝑀𝑖−1)  to be the last four selected characters, we 
computed  

 𝑝(𝐿𝑖|𝑀𝑖−4
𝑖−1) =  𝜆 ∗ 𝑃𝑛 + (1 − 𝜆) ∗

1

𝐾
 

where the parameter 𝜆 controlled the amount of smoothing. 
We used this to avoid zero probabilities, which might occur 
for unseen letter combinations in the data set, and to avoid 
probabilities which are too close to one, which might lead to 
automatic selection of a character. When 𝜆 = 0, all keys are 
considered to be uniformly probable, essentially ignoring all 
past context.  

C. Bayesian Cue Integration 

Let 𝐿𝑖  indicate the current key the user wishes to select, 

𝑀𝑖−1
𝑖−4  indicate the past four letters actually selected, and 𝑔1

𝑡 
denote the sequence of gaze points up to time t after the last 
selected character, 𝑀𝑖−1. Note that each selection is based on 
multiple gaze points. Using Bayes rule, we find the posterior 
probability 

 𝑝(𝐿𝑖|𝑔1
𝑡 , 𝑀𝑖−4

𝑖−1) =
𝑝(𝑔1

𝑡 |𝐿𝑖,𝑀𝑖−1)∗𝑝(𝐿𝑖|𝑀𝑖−4
𝑖−1)

∑ 𝑝(𝑔1
𝑡 |𝐿=𝑘,𝑀𝑖−1)∗𝑝(𝐿=𝑘|𝑀𝑖−4

𝑖−1)𝐾
𝑘=1

  

Selection is performed by comparing the value of 

𝑝(𝐿𝑖|𝑔1
𝑡 , 𝑀𝑖−4

𝑖−1) with a pre-defined threshold 𝛼.  

Intuitively, at the beginning of the selection period, due to 
the incorporation of the prior context, the posterior probability 
is already closer to the threshold for characters that are more 

likely. Although the user’s eyes are likely still at the last key 
selected, this does not initially change the posterior probability 
of the keys by much, since the gaze likelihoods for all keys are 
similar due to the time delay in equation (2). As the user seeks 
the next key, the gaze position becomes weighted more and 
more, increasing the posterior probability of the keys being 
looked at. Eventually, if the user spends long enough looking 
at a particular key, the posterior probability rises above the 
threshold and the key is selected. The amount of time required 
for this to happen is the dwell time, which will be shorter for 
more likely keys due to their higher initial posterior 
probability. 

To obtain a system that is very similar to standard dwell 
time based typing, we set the smoothing parameter 𝜆 = 0 , 
which eliminates the contribution of prior context. Assuming 
that the delay 𝑇d = 0, the posterior probability is given by  

 𝑝(𝐿𝑖|𝑔1
𝑡 , 𝑀𝑖−4

𝑖−1) =
𝑞(𝑔1

𝑡 |𝐿𝑖)

∑ 𝑞(𝑔1
𝑡 |𝐿=𝑘)𝐾

𝑘=1
  

where 𝑞(𝑔𝑡|𝐿𝑖) is given in equation (2). Assuming that the 
user is looking within the box corresponding to the desired key 
for the entire selection period, this can be expressed as 

 𝑝(𝐿𝑖|𝑔1
𝑡 , 𝑀𝑖−4

𝑖−1) =
1

1+(𝐾−1)(1+
𝑤

1−𝑤
 
𝐴S
𝐴K

)
−𝑡  

where 𝐴S  and 𝐴K  are the area of the screen and the area 
associated with the key. This probability increases 
monotonically from 1 𝐾⁄  when t = 0 to a maximum value of 1 
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Figure 1. (a) The experimental setup. (b) The keyboard interface. The closing 

circle indicates the progress of the selection.  
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as t approaches infinity. The amount of time it takes to reach 
the threshold (the dwell time) increases with 𝛼 and decreases 
with w.  

For given values of 𝛼 and w, we define the nominal dwell 
time of the probabilistic system to be 𝑡 ⋅ 𝑇𝑠 where 𝑡 is the time 

index at which 𝑝(𝐿𝑖|𝑔1
𝑡 , 𝑀𝑖−4

𝑖−1)  in equation (8) exceeds the 
threshold the 𝛼 and 𝑇𝑠 is the sampling period. When w = 0, the 
gaze likelihood is the same for all keys; the gaze is 
uninformative about the user intent; and the selection is never 
made, i.e. the nominal dwell time is infinite. When w = 1, the 
gaze is assumed to a perfect indicator of intent, and selection 
occurs immediately based on the first gaze point, i.e. the 
nominal dwell time is 𝑇𝑠. 

In our experiments (data not shown), we observed little 
difference in performance between a standard implementation 
of dwell-based typing with a 150ms delay to avoid double-
entry and our probabilistic system with 𝜆 = 0  and 𝑇d  = 
150ms. Because of our probabilistic treatment of gaze, the 
system handles non-ideal behavior, e.g. short intermit drifts 
away from the selection square naturally gracefully, without 
requiring ad-hoc measures commonly used in other dwell 
based methods, e.g. looking for a certain number of gaze 
points at the same key over a larger window of time.  

III. EXPERIMENTAL PROCEDURE 

A. Participants 

Altogether 10 participants (6 males and 4 females, average 
age of 26.1, SD=1.45) took part in the experiments. All had 
normal or corrected-to-normal vision. Two had prior 
experience in using eye trackers. None had experience in gaze 
typing.  

B. Experimental setup 

The eye tracker used was Tobii X60 with sampling rate of 
60HZ. The subject is seated in front of a 19 inch 1280×1024 
resolution monitor at distance around 60cm (Figure 1(a)). A 
chinrest was used to help avoid large head movements. 
Standard nine-point eye tracker calibration was performed 
before the experiment.  

The interface we used was shown in Figure 1(b). Keys are 
arranged in the same way as the QWERTY keyboard layout. 
The horizontal distance between neighboring keys and vertical 
distance between rows are both 120 pixels. The space key is 
placed in the middle and below the letter keys, with the 
backspace key at its right. We also place an “END” key to 
indicate the finish of current sentence entry. 

The stimulus sentence is placed on the top panel, in black. 
The transcribed string is in red, placed below the stimulus. We 
did not include any other symbols or function keys in the 
experiment. Typing was case insensitive. All keys had the 
same sized active selection area, a 120×120 pixel square 
centered at the key center.  

We also included visual and auditory feedback in the 
experiment. An animated circle closing around the letter is 
shown to indicate the progress towards key selection. The 
selection was made when the circle closed. After selection, the 
key flashed in red and a ‘click’ sound was generated.  

C. Procedure 

We compared a standard (non-adaptive) dwell-based gaze 
typing system and our proposed probabilistic gaze typing 
system, where dwell time adapts according to the prior 
selection history. For both the standard and probabilistic 
models, the selection of ‘Backspace’ and ‘END’ key followed 
the standard dwell-based technique. 

In the standard dwell-based gaze typing system, keys were 
selected if the user fixated on their associated selection box 
continuously for the dwell time. However, for the previously 
selected key, the dwell time clock could be started only 150ms 
after the previous selection to avoid double entry.  

For the probabilistic gaze typing system, we set the 
threshold 𝛼 = 0.9, and chose four values of w according to 
equation (8) so that the threshold was exceeded after nominal 
dwell times of 500ms, 400ms, 300ms and 200ms. These values 
of w are listed in Table 1. We set 𝑇d = 150ms to avoid double 
entry. We fixed the value of the smoothing parameter 𝜆 =
0.75  for all experiments to ensure consistency among the 
experimental results. During actual usage, we expect that 𝜆 
could be chosen by the user according to their preferred 
amount of dwell time adaptation.  

For each subject, the experiment had two phases: a learning 
phase and an evaluation phase. The goal of the learning phase 
is to familiarize subjects with the interface and gaze typing. 
Subjects conducted 8 sessions of gaze typing: four sessions of 
standard dwell-based typing where the nominal dwell-time 
varied between 500ms, 400ms, 300ms and 200ms and another 
four sessions of probabilistic dwell-based typing with same 
nominal dwell times. During each session, subjects typed three 
phrases, chosen from the phrase sets for evaluating text entry 
techniques in [23].  

In the evaluation phase, each subject also conducted 8 
sessions, alternating between the standard and probabilistic 
models with the same nominal dwell time. Which technique 
was used first was randomly selected at the beginning of the 
evaluation phase, and remained the same for all sessions. 
During the evaluation stage, each subject typed 15 phrases, 
which were distinct from those used in training, but chosen 
from the same database. To allow time for adaptation, we 
discarded the results from the first phrase in each session. 
Subjects were instructed to correct errors only when they 
noticed them immediately. Subjects took 10 minute breaks 
after every two sessions.  

Subjective evaluations were collected after each session in 
advanced phase. NASA TLX workload scale[24] is used to 
evaluate the task workload. The workload is a combined 
evaluation from 6 aspects: mental demand, physical demand, 
temporal demand, performance, effort and frustration. We also 
asked the subject to rate each session in terms of speed, 
accuracy and overall performance in 10-point scale.  

TABLE I.  𝑤 VALUES USED IN THE EXPERIMENT  

Dwell time 500ms 400ms 300ms 200ms 

𝒘 0.0022 0.0028 0.0040 0.0065 

254



  

IV. EXPERIMENTAL RESULTS 

We adopted several metrics to evaluate results in terms of 
both overall performance and detailed performance. 

A. Words per Minute (WPM) 

Words per minute (WPM) has long been a standard metric 
to measure text-entry speed. Each ‘word’ corresponds to five 
characters. The WPM is obtained by dividing the number of 
words entered by the number of minutes required to enter the 
text. The time for entering ‘END’ key was not counted. This 
metric measures the overall typing speed performance. Both 
long selection time per character and corrections due to a large 
number of selection errors lead to low WPM values.  

Figure 2 shows the mean and standard deviation of WPM 
obtained for different nominal dwell times averaged across all 
subjects and all phrases. The probabilistic technique leads to 
significant increases in typing speed. We conducted two-way 
analysis of variance where each phrase was considered as a 
replication to analyze the impact of Technique×Dwell time. 

There was a significant main effect for technique (𝐹1,1112 =
422.63, 𝑝 < 0.0001) and for dwell time (𝐹3,1112 = 31.87,
𝑝 < 0.0001 ). There was not a significant effect for 

Technique×Dwell time interaction ( 𝐹3,1112 = 2.1, 𝑝 =
0.0991).  

The fastest typing was obtained when the nominal dwell 
time was set to 300ms for both the standard and probabilistic 
systems. At this setting, the increase in speed for the 
probabilistic system was significant ( 𝑝 < 0.05). The average 
speed of the fastest probabilistic system is 26% faster than that 
of the fastest standard dwell-based system. This increase is 
much larger than that observed in prior work that adjusted 
dwell time dynamically (17%) [21]. The fastest speed of our 
system (18.4 WPM) is also larger (12.39 WPM).  

B. Keystrokes per Character (KSPC) 

In addition to speed, we also care about the accuracy. 
Generally, number of corrections required increases as the 
dwell-time decreases. The keystrokes per character (KSPC) 
measures the how many corrections are made during text 
entry. It is defined as the ratio between the number of real 
keystrokes and the minimum number of keystrokes needed to 

enter a string. KSPC = 1 indicates no corrections. Any 
corrections during text entry will make KSPC larger than 1.  

Figure 3 shows the mean and standard deviation of the 
KSPC obtained at different nominal dwell times. The 
performance of the standard and probabilistic systems is 
similar when the nominal dwell time is long. Both have low 
correction rates. However, for shorter nominal dwell times, the 
probabilistic model gives a lower error rate. The improvement 
at the shortest nominal dwell time setting (200ms) is 
significant (  𝑝 < 0.05 ). Thus, the probabilistic system 
introduces fewer errors than the standard system. Our 
approach not only facilitates the selection of highly probable 
letters by shortening their dwell time, but also lengthens the 
dwell time for unlikely letters. This avoids incorrect selections 
at short nominal dwell-times.  

C. Milliseconds per Character (MSPC) 

In addition to measures of word-level performance using 
the WPM and KSPC, we also computed character-level 
performance. The milliseconds per character (MSPC) 
measures the average time for selecting one character. Unlike 
the previous metrics, we do data cleaning at this stage, since 
we hope to investigate error free performance under each 
setting. We adopted the same data cleaning process as in [7]. 
Only selections that are entered correctly after another correct 
character were considered. Selections were also discarded if 
the subject glanced at the string line during the process of 
selection.  

Figure 4 shows the mean and standard deviation of MSPC 
obtained in each session. The proposed model used less time 
on average for single selection, especially for long dwell time 
case. This indicate that the n-gram letter prediction works well. 
It successfully decreases the dwell time of the target key for 
most of the selections.  

D. Total Error Rate 

MSPC is intended to measure the error-free typing speed. 
Since there is a tradeoff between accuracy and speed in dwell-
based typing, we computed the total error rate as a character 
level evaluation considering both speed and accuracy. 
Although KSPC measures the overall occurrence of 
corrections, there are also errors that are not corrected. These 
errors remains in the transcribed text, which is actually typed 

 

Figure 2. Words per Minute (WPM). Error bars indicate the standard 

deviation.  

 

Figure 3. Keystrokes per Character (KSPC). Error bars indicate the standard 

deviation. 
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by the subjects. To take these into account,  Soukoreff  
proposed a metric of total error rate, which accounts for both 
corrected errors and uncorrected errors [25]. The total error 
rate is defined as the ratio of incorrect character entries to the 
total character entries. Incorrect character entries include both 
those that were fixed and those that were not. Unfixed errors 
were identified by the minimum number of editing primitives 
(insertion, deletion, and substitution) required to transform the 
transcribed string to the target string.  

Figure 5 shows the relationship between total error rate and 
the MSPC. The red curve, corresponding to the proposed 
method is generally below the blue curve of the standard 
dwell-based technique. This demonstrates that our system 
functions at faster speed with lower error rates. 

E. Subjective Evaluation 

Figure 6 shows the subjective evaluation of workload from 
NASA TLX averaged over subjects for each nominal dwell 
time. In all cases, the probabilistic system requires less 
perceived workload than the standard system.  

We also asked subjects to rate each session in terms of 
speed, accuracy and overall performance. Each session is 
scored using a 10-point scale, where 10 stands for fastest, most 
accurate or best overall. Table II shows the mean and standard 

deviation of these ratings for each experimental condition. The 
subjective evaluations of speed match the trend in MSPC. The 
subjective evaluation of accuracy matches the trend in KSPC. 
In the overall evaluation, the proposed method generally 
achieves higher score than standard dwell-based technique. 
The probabilistic technique with nominal dwell time equal to 
300ms achieves highest score in overall evaluation.  

V. CONCLUSION 

We have described a probabilistic model of dwell-based 
gaze typing. Using this model, we have constructed a gaze 
typing system where the dwell time assigned to different keys 
varies according to the past typing history. Unlike prior 
approaches to adapting dwell time, which were based on 
heuristics and required manual tuning of a large number of 
parameters, our technique is mathematically rigorous and is 
based on a small number of parameters, each of which has an 
intuitive interpretation. Our experimental results showed that 
the proposed method improves the speed at the same fixed 
accuracy, and improves accuracy at the same nominal dwell 
time.  

TABLE II.  SUBJECTIVE SCORE 

  500ms 400ms 300ms 200ms 

Speed Std. 3.2±2.44 4.9±1.66 6.2±1.87 8.8±0.92 

Prob. 5.7±2.00 7.2±1.23 8.1±0.99 9.5±0.71 

Acc. Std. 8.0±2.40 7.9±2.13 6.9±1.52 4.3±2.79 

Prob. 9.0±0.82 8.4±1.43 7.4±1.35 5.5±2.37 

Overall Std 4.2±2.90 5.9±1.37 6.6±1.17 5.1±2.38 

Prob. 6.4±1.78 7.8±1.23 8.2±1.23 5.9±1.66 
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