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ABSTRACT
Past work in eye tracking has focused on estimating gaze targets
in two dimensions (2D), e.g. on a computer screen or scene camera
image. Three-dimensional (3D) gaze estimates would be extremely
useful when humans are mobile and interacting with the real 3D
environment. We describe a system for estimating the 3D locations
of gaze using a mobile eye tracker. The system integrates estimates
of the user’s gaze vector from a mobile eye tracker, estimates of the
eye tracker pose from a visual-inertial simultaneous localization
and mapping (SLAM) algorithm, a 3D point cloud map of the envi-
ronment from a RGB-D sensor. Experimental results indicate that
our system produces accurate estimates of 3D gaze over a much
larger range than remote eye trackers. Our system will enable ap-
plications, such as the analysis of 3D human attention and more
anticipative human robot interfaces.
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1 INTRODUCTION
Eye gaze tracking has been used successfully as an input modality
for interacting with computers, e.g. gaze based typing [Majaranta
et al. 2009; Pi and Shi 2017; Räihä and Ovaska 2012] or cursor control
[Dong et al. 2015], and for controlling assistive devices, such as
wheelchairs [Ktena et al. 2015; Wästlund et al. 2010; Yu et al. 2014],
robot arms [Admoni and Srinivasa 2016; Dziemian et al. 2016; Wang
et al. 2015], exoskeletons [Katyal et al. 2013; McMullen et al. 2015,
2014], and drones [Hansen et al. 2014; Yu et al. 2014].

Gaze estimation depends upon eye tracking, the estimation of
the eye position and orientation in some coordinate frame, usually
associated with the measurement apparatus. If the measurement ap-
paratus is fixed in the world, as with the scleral contact lens/search
coil or a remote eye tracker, then eye position/orientation is pro-
vided in world-centric coordinate systems. If the measurement
apparatus is attached to the head, as with Electro-OculoGraphy or
in head-mounted eye trackers, then the eye tracker returns the eye
position/orientation in head-centric coordinates. In this case, the
position and orientation of the head must be estimated in order
to map the eye position/orientation to gaze direction. When head
position is fixed in world coordinates, e.g. by a bite bar or chin
rest as common with tower mounted systems, the two coordinate
systems are related by a fixed transformation.

Most applications to date have used 2D gaze estimates provided
either in world-centric coordinates or in head-centric coordinates.
Remote eye trackers typically provide 2D gaze estimates on a screen
located at a fixed position in front of the user and above or below the
eye tracker. Head-mounted eye trackers typically provide 2D gaze
estimates on an image taken by a scene camera which is mounted
on the same set of goggles holding the eye tracker.

There is increasing interest in estimating gaze target locations in
3D world coordinates. For example, 3D gaze estimates hold promise
as an excellent cue for human robot interaction. By knowing where
in the environment a user is looking, a robot may be able to infer
something about the user’s intent and provide anticipative assis-
tance or to suggest possible types of assistance it might render.

The most common approach to estimate 3D gaze position is by
triangulating gaze vectors from the left and right eyes [Abbott and
Faisal 2012; Li et al. 2017; Pirri et al. 2011]. However, this approach
results in large variance along the line of sight, due to errors in
estimating eye gaze as well as fixational eye movements [Jacob
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Figure 1: System architecture.

1993]. Hennessey et al. addressed this problem by filtering the
raw gaze data [Hennessey and Lawrence 2009]. Unfortunately, this
introduces a system delay depending on the length of filters. Wang
et al. improved initial 3D gaze estimates obtained by triangulation
using a point cloud representation of the environment by assuming
that gaze targets are located on object surfaces [Wang et al. 2017].

There is typically a trade-off between the allowable user move-
ment and the accuracy of gaze estimates. Tower-mounted eye track-
ers have the least tolerance for head movement, but produce more
accurate estimates than remote eye trackers, which tolerate a small
amount of head movement [Holmqvist et al. 2012]. Popular re-
mote eye trackers currently available on the market claim head box
ranges of 40×40 cm2 (SR Research EyeLink 1000Plus), 50×30 cm2

(SMI REDn) and 44×22 cm2 (Tobii T60XL) [Niehorster et al. 2018].
The allowable range of head movements can be increased through
the use of multiple cameras (SmartEye, http://smarteye.se/) or by
mounting the eye-tracker camera on motorized gimbals controlled
by a wide range camera that tracks user’s head position (Eyefol-
lower, http://www.eyegaze.com). The range of orientations allowed
by remote eye tracking systems is limited, as they require the user
to face towards the eye tracker cameras, which are typically fixed.
Head-mounted eye trackers provide gaze estimates allow for the
widest range of head movements and orientations. However, they
provide the gaze estimates in head-centric coordinates. In order
to translate these gaze estimates to world-centric coordinates, the
position and orientation of the eye tracker must be estimated dy-
namically as the user moves. This problem has only begun to attract
investigation [Paletta et al. 2013].

In this paper, we propose an algorithm for estimating gaze tar-
gets in 3D world-centric coordinates while also allowing for a wide
range of head movements. Our algorithm combines head-centric
gaze estimates from a head-mounted eye tracker with estimates of
head position and orientation obtained by visual-inertial simultane-
ous localization and mapping (SLAM) to estimate 3D gaze vectors
in world-centric coordinates. These initial gaze vectors are refined
using a point cloud representation of the environment. Our experi-
mental results with this system show that it tolerates larger head
displacements than a system based upon a remote eye tracker. The
system has a mean angular error of only 2.9±1.0 degrees over a
testing range covering 13 square meters (400×335 cm2).

This work improves upon past work in several ways. First, in
contrast to past work that provided gaze estimates only in head-
centric coordinates [Abbott and Faisal 2012; Li et al. 2017; Pirri
et al. 2011], our algorithm provides gaze estimates in world-centric
coordinates. The algorithm also allows for a wider range of head
movements than previously reported by [Wang et al. 2017], who
requested that the subjects keep their heads still, and by [Hennessey
and Lawrence 2009], who reported results for head movements only
over the range of 3.2 × 9.2 × 14 cm (horizontal×vertical×depth).
Finally, by using SLAM to dynamically estimate head pose and
map the environment based on the past trajectory and image data,
we expect that our system will be more robust to changes in the
environment than approaches which use SLAM to obtain a pre-
computed static model of the environment and localize the camera
using image matching with the eye tracker’s scene camera image
[Paletta et al. 2013].

2 METHOD
Fig. 1 shows the system architecture. The system contains three
sensor systems: a set of sensors for the SLAM algorithm (an inertial
measurement unit (IMU) and an RGB camera), a head-mounted
eye tracker, and a Kinect red-green-blue-depth (RGBD) sensor. We
define a coordinate system for each sensor system: SLAM (s), eye
tracker (e) and Kinect (k). Because the SLAM sensors are physically
fixed to the eye tracker, the transformation from eye tracker to
SLAM coordinates T se is constant. However, the transformation
from SLAM to Kinect coordinates T ks,t changes over time t .

The IMU and RGB camera of the SLAM sensor set provides
gyroscope measurements ωt , accelerometer measurements at and
image frames ft , where t indexes time. The eye tracking glasses
provide estimates of the 3D gaze location Ge

t and the average of
the left and right pupil positions Eet in eye tracker coordinates. The
Kinect RGB-D sensor provides a description of the environment
as a 3D point cloud {Pki }

N
i=1 in Kinect coordinates, where N is the

number of points.
We use a SLAM algorithm [Qin et al. 2017] to estimateT ks,t from

the past gyroscope, accelerometer and image data. We use this to
map Ge

t and Eet to Kinect coordinates, e.g.,

Gk
t = T

k
s,t ·T se ·Ge

t (1)

http://smarteye.se/
http://www.eyegaze.com
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Figure 2: Experimental setup.

Finally, we refine the 3D gaze estimate finding the point in {Pki }
N
i=1

that is closest to the cyclopean line of sight Gk
t − Ekt [Wang et al.

2017]. The following subsections describe these operations in more
detail.

2.1 Camera calibration
We estimate the transformations between the three coordinate sys-
tems: (s), (e), and (k) using images of a chessboard pattern taken
by the SLAM camera, the eye tracker scene camera and the Kinect
RGB camera simultaneously at an initial time (t0). We use cam-
era calibration to estimate the transformations between the three
coordinate systems at time t0 and the chessboard coordinates (c):
T ce,t0 ,T

c
s,t0 ,T

c
k , where we assume that the chessboard pattern is

stationary in Kinect coordinates. Since T se is also time invariant

T se = T
s,t0
c ·T ce,t0 (2)

2.2 Eye tracker pose estimation
We use VINS-Mono [Qin et al. 2017], a monocular visual-inertial
SLAM algorithm to estimate the transformation (T ks,t ). The addition
of inertial data enables us to estimate metric scale information,
which cannot be obtained from a monocular camera alone. The
VINS-Mono algorithm features a robust procedure for estimator
initialization and failure recovery, high accuracy visual-inertial
odometry by fusing pre-integrated IMU measurements and fea-
ture observations by nonlinear optimization, and a loop detection
module for re-localization with minimum computation overhead.

The VINS-Mono provides estimates of the SLAM IMU/camera
pose relative to the chessboard, T cs,t . We obtain the transformation
from SLAM to Kinect coodinates by T ks,t = T

k
c ·T cs,t , where T kc is

obtained by camera calibration.

2.3 3D gaze estimation refinement
Since the eye tracker computes 3D gaze estimates by triangulating
gaze vector estimates for the two eyes, small errors in estimating
the gaze direction lead to large errors in the 3D gaze estimates,
especially along the depth dimension [Hennessey and Lawrence
2009]. To reduce these errors, we refined the raw 3D gaze estimates
by taking into account the structure of the environment. Given
initial estimates of the cyclopean eye and 3D gaze positions, Ek

Figure 3: The locations used to evaluate the performance.

and Gk , we obtained a refined gaze estimate G̃k
t = Pkj where

j = argmin
i

|(Pi − Ek ) × (Pi −Gk )|
|(Pk −Gk )|

(3)

3 EXPERIMENTS
Our experimental system is based on a Tobii Pro Glasses 2 head-
mounted eye tracker, which provides gaze estimates at 50 Hz. The
SLAM camera is an Intel Real-sense camera ZR300, which has a
global shutter, a fish-eye lens resulting in a 100◦×133◦ field of view,
and a frame rate of 30Hz. The sampling rate of the IMU is 350 Hz.
The SLAM algorithm computes pose estimates at 10 Hz.

Fig. 2 shows the experimental setup. To provide ground truth
estimates of the pose of the SLAM system, we use an OpiTrack
system (http://optitrack.com/) mounted at the ceiling and markers
attached to the SLAM sensors (See Fig. 1). Before each experiment,
we calibrated the eye tracker and the cameras. The subject cali-
brated the eye tracker using the manufacturer’s provided one-point
calibration.

We conducted three experiments to evaluate our system.
In the first experiment, we compared the performance of our

system with that of a remote eye tracker, the Tobii X60. We used the
method in [Wang et al. 2017] to estimate the 3D gaze position. We
collected gaze data for subjects standing at the 21 positions shown as
the red grid in Fig. 3. This grid is centered at a point directly in front
of and 65 cm away from the X60, and covers a range of 40×20 cm.
We chose these points because the recommended operating distance
of the X60 is 65 cm, and the points all lie within the 44×22×30 cm3

(width×height×depth) headbox advertised by Tobii.
We evaluated the accuracy for six subjects. Subjects stood at

each of the positions and gazed at a fixation cross located inside the
red square target shown in Fig. 2. For each subject, each location
and each of the two systems, we collected 100 3D gaze estimates
over a period of 2 seconds.

In the second experiment, we evaluated the proposed system over
a much wider range of positions shown as the blue grid covering a
range of 400×335 cm, as shown in Fig. 3. We evaluated the accuracy
of the system for six subjects. The subjects stood at the each of
the locations and gazed at the fixation cross. At each location, we
collected 100 3D gaze estimates over a period of 2 seconds. The
SLAM algorithm was used to estimate pose continuously, both

http://optitrack.com/


ETRA ’18, June 14–17, 2018, Warsaw, Poland H. Wang et al.

Figure 4: Performance comparison between the remote eye
tracker and proposed system. Error bars show the standard
deviation computed across all samples and all subjects.

while the users were standing at each position and as they were
moving from point to point. Since subjects need to look down to
locate the test positions, head movements included both translation
and rotation.

In the final experiment, we recorded the estimated gaze as user
moved in a more natural office environment.

4 RESULTS
4.1 Comparison with remote eye tracker
Fig. 4 compares performance of the proposed system with the re-
mote eye tracker, as measured by the mean absolute error, the mean
Euclidean distance from the estimated 3D gaze location to fixation
cross.

For the remote eye tracker, the error was smallest when the sub-
ject was directly in front of the eye tracker, but degraded rapidly as
the subject moved to the left or right (along the x axis). Consistent
with [Blignaut and Wium 2014], we found that despite the adver-
tised horizontal range of 44cm, error increased dramatically 10cm
to the left or right of the calibration point.

The error of the proposed system was larger than that of the
remote eye tracker when the subject was directly in front of the
remote eye tracker, but remained stable over the entire testing
range. It was lower than that of the remote eye tracker at the left
and right endpoints.

In comparison to other work reporting results in world-centric
coordinate systems, our system works over a wider range (40 cm
in x and 20 cm in depth), albeit with a larger mean absolute error
4.4±1.9 cm. Hennessey et al. reported a mean absolute error of
3.9±2.8 cm over a range 3.2 cm in x , 14 cm in depth and 9.2 cm
in height [Hennessey and Lawrence 2009]. Wang et al. reported
a mean absolute error of 1.7±0.7 cm, but evaluated only at the
calibration position [Wang et al. 2017].

Table 1: Angular error at different positions(degrees)

z
x -200cm -100cm 0cm 100cm 200cm

65cm 1.8±0.9 3.0±0.8 2.8±1.3 3.5±1.2 2.4±1.3
100cm 2.3±0.9 2.6±0.9 3.6±0.6 3.2±0.8 2.9±1.2
200cm 2.2±0.8 3.1±0.5 3.1±0.7 3.2±0.8 2.7±0.9
300cm 2.3±0.8 2.8±0.8 3.3±1.0 3.4±0.7 3.0±0.7
400cm 2.6±1.0 2.6±0.7 3.1±0.8 2.7±0.5 2.7±0.7

4.2 Performance over larger range
For each 3D gaze estimate, we define the angular error as the angle
of the vectors from the ground truth eye position as given by the
OptiTrack system to the positions of the estimated 3D gaze and the
fixation cross. The mean angular error of the gaze estimates from
our system over users and all positions shown on the blue grid in
Fig. 3 was 2.9 degrees. The standard deviation computed over all
users and all positions was 1.0 degrees. The standard deviation of
the mean angular errors of the 3D gaze estimates at the 25 positions
is 0.4 degrees, suggesting that the system performance is stable at
different positions. The standard deviations of the mean angular
errors in the 3D gaze estimates for different subjects is 0.4 degrees.
The standard deviations of the mean angular error of the orientation
estimates from SLAM for different subjects was also 0.4 degrees.
These results both suggest that the performance is fairly subject
independent.

There are several sources of this angular error. The first is angular
error in the 3D gaze estimates from the eye tracker. The second
is the angular error in the estimates of the orientation of the eye
tracker from the SLAM algorithm. The third is the Euclidean error
in the estimates of the location of the eye tracker from SLAM.
Comparingwith the head pose estimates from theOptiTrack system,
we estimated the mean angular error of SLAM estimates to be
1.4 ± 0.9 degrees and the mean translational error to be 8.4 ± 5.9
cm.

4.3 Performance in office environment
We tested the system in a more natural office settings, where a
subject viewed different objects (a box, a book and a cup) placed
on a table as the subject moved around the room. A video of the
experiment can be found at (https://youtu.be/t5c88_bhRsY), demon-
strating that our system provides accurate 3D gaze estimates in
fairly unconstrained indoor environments, and therefore might be
used during activities of daily living.

5 CONCLUSIONS
We have proposed a novel system for estimating the 3D locations
of gaze targets in world-centric coordinates by integrating gaze
estimates from a head-mounted eye tracker, head pose estimates
from monocular visual inertial SLAM, environmental point cloud
data from an RGB-D sensor. The key advantages of this work
over prior approaches are the availability of accurate estimates
in world-centric coordinates, a larger working range, and robust-
ness to changes in the environment. We are currently applying our
system to human robot interaction in the 3D environment.

https://youtu.be/t5c88_bhRsY
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